Zhang, Yanbin, Thor, Mathias, Dilokthanakul, Nat, Dai, Zhendong and Manoonpong, Poramate Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot Neural Networks..
Leggedrobotsthatcaninstantlychangemotorpatternsatdifferentwalkingspeedsareusefuland canaccomplishvarioustasksefficiently.However,state-of-the-artcontrolmethodseitheraredifficult todeveloporrequirelongtrainingtimes.Inthisstudy,wepresentacomprehensibleneuralcontrol frameworktointegrateprobability-basedblack-boxoptimization(PIBB)andsupervisedlearningfor robotmotorpatterngenerationatvariouswalkingspeeds.Thecontrolframeworkstructureisbased onacombinationofacentralpatterngenerator(CPG),aradialbasisfunction(RBF)-basedpremotor networkandahypernetwork,resultinginaso-calledneuralCPG-RBF-hypercontrolnetwork.First,the CPG-drivenRBFnetwork,actingasacomplexmotorpatterngenerator,wastrainedtolearnpolicies (multiplemotorpatterns)fordifferentspeedsusingPIBB.Wealsointroduceanincrementallearning strategytoavoidlocaloptima.Second,thehypernetwork,whichactsasatask/behaviortocontrol parametermapping,wastrainedusingsupervisedlearning.Itcreatesamappingbetweentheinternal CPG frequency (reflecting the walking speed) and motor behavior. This map represents the prior knowledgeoftherobot,whichcontainstheoptimalmotorjointpatternsatvariousCPGfrequencies. Finally,whenauser-definedrobotwalkingfrequencyorspeedisprovided,thehypernetworkgenerates thecorrespondingpolicyfortheCPG-RBFnetwork.Theresultisaversatilelocomotioncontrollerwhich enablesaquadrupedrobottoperformstableandrobustwalkingatdifferentspeedswithoutsensory feedback.Thepolicyofthecontrollerwastrainedinthesimulation(lessthan1h)andcapableof transferringtoarealrobot.Thegeneralizationabilityofthecontrollerwasdemonstratedbytesting theCPGfrequenciesthatwerenotencounteredduringtraining.
Item Type:
Article
Subjects:
Subjects > Computer Science > Artificial Intelligence
Deposited by:
Nat Dilokthanakul
Date Deposited:
2025-07-03 19:52:47
Last Modified:
2025-07-07 09:41:06