Non-Linear Learning Factor Control for Statistical Adaptive Background Subtraction Algorithm

338

Views

0

Downloads

Thongkamwitoon, Thirapiroon, Aramvith, Supavadee and Chalidabhongse, Thanarat Horprasert (2005) Non-Linear Learning Factor Control for Statistical Adaptive Background Subtraction Algorithm In: 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan.

Abstract

The background subtraction algorithm has been proven to be a very effective technique for automated video surveillance applications. In statistical approach, background model is usually estimated using Gaussian model and is adaptively updated to deal with changes in dynamic scene environment. However, most algorithms update background parameters linearly. As a result, the classification results are erroneous when performing background convergence process. In this paper, we present a novel learning factor control for adaptive background subtraction algorithm. The method adaptively adjusts the rate of adaptation in background model corresponding to events in video sequence. Experimental results show the algorithm improves classification accuracy compared to other known methods.

Item Type:

Conference or Workshop Item (Paper)

Identification Number (DOI):

Deposited by:

ระบบ อัตโนมัติ

Date Deposited:

2021-09-09 23:53:47

Last Modified:

2021-10-26 05:03:53

Impact and Interest:

Statistics