Automatic Attribute Discovery with Neural Activations

381

Views

0

Downloads

Vittayakorn, Sirion, Umeda, Takayuki, Murasaki, Kazuhiko, Sudo, Kyoko, Okatani, Takayuki and Yamaguchi, Kota (2016) Automatic Attribute Discovery with Neural Activations In: Computer Vision – ECCV 2016, Lecture Notes in Computer Science Springer International Publishing, 252-268.

Abstract

How can a machine learn to recognize visual attributes emerging out of online community without a definitive supervised dataset? This paper proposes an automatic approach to discover and analyze visual attributes from a noisy collection of image-text data on the Web. Our approach is based on the relationship between attributes and neural activations in the deep network. We characterize the visual property of the attribute word as a divergence within weakly-annotated set of images. We show that the neural activations are useful for discovering and learning a classifier that well agrees with human perception from the noisy real-world Web data. The empirical study suggests the layered structure of the deep neural networks also gives us insights into the perceptual depth of the given word. Finally, we demonstrate that we can utilize highly-activating neurons for finding semantically relevant regions.

Item Type:

Book Section

Identification Number (DOI):

Deposited by:

ระบบ อัตโนมัติ

Date Deposited:

2021-09-06 03:38:22

Last Modified:

2021-09-16 22:21:43

Impact and Interest:

Statistics